Photodegraded nifedipine promotes transferrin-independent gallium uptake by cultured tumor cells.
نویسندگان
چکیده
UNLABELLED It was reported previously that normal soft tissues accumulate 67Ga by a transferrin-dependent route, but uptake by tumors can be transferrin independent. It was also reported that, although overexpression of the transferrin receptor can promote Ga avidity, the transferrin-independent uptake of 67Ga is significant and can be augmented to exceed transferrin-mediated levels by increasing extracellular calcium. In assessing the effect of calcium channel blockers on uptake of 67Ga, it was observed that, after exposure to light (either visible or ultraviolet [UV]), nifedipine strongly potentiates the cellular uptake of 67Ga by a transferrin-independent process. METHODS The effect of nifedipine on 67Ga uptake as a function of time, concentration, duration and type of preexposure to light was determined in two cultured Chinese hamster ovary cell lines. One cell line lacks the transferrin receptor. In the other, the human transferrin receptor has been restored by transfection and is overexpressed constitutively. RESULTS Although there are some differences in pattern of stimulation of uptake, nifedipine subjected to either UV or fluorescent light strongly promotes the uptake of 67Ga in the cultured cells in a time-dependent and concentration-dependent manner. Maximal uptake of 67Ga occurs when the cells are incubated for 30 min with 25 micromol/L nifedipine preexposed to either 4h of fluorescent or 1h of UV light. Under these conditions, uptake of 67Ga is 1000-fold greater than basal levels and 50-fold greater than can be achieved by the transferrin-dependent route. Light-shielded nifedipine has no effect on 67Ga uptake. CONCLUSION The effect of photodegraded nifedipine on the uptake of 67Ga is independent of expression of the transferrin receptor. The potential for photodegraded nifedipine to improve oncologic imaging with 67Ga warrants further investigation.
منابع مشابه
Assessment of metrezoate-labeled gallium transmission in cultured human Burkitt lymphatic cells
Background: In addition to determining the exact tumor location and its geometric features, an increase of the effective tumor atomic number will enhances the chance in treating the tumoral cells under suitable radiation. In the present study, we assessed metrezoate-labeled gallium transmission in Burkett lymphatic cells. Materials and Methods: Human Burkitt lymphatic cells were grown ...
متن کاملRegulatory effects of gallium on transferrin-independent iron uptake by human leukemic HL60 cells.
Gallium, a pharmacologically important metal, resembles iron with respect to transferrin (Tf) binding and Tf receptor-mediated cellular uptake. In the present study, we examined the effect of gallium on Tf-independent iron uptake by HL60 cells. In contrast to the inhibitory effect of Tf-gallium on Tf-iron uptake, gallium nitrate, in a time-, temperature-, and concentration-dependent manner, sti...
متن کاملUptake of gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms.
We have studied the role of transferrin and the transferrin receptor in the uptake of 67Ga by the human leukemic cell line HL60. In the absence of transferrin, HL60 cells incorporated about 1% of the 67Ga dose over 6 h. The presence of transferrin increased cellular 67Ga uptake approximately 10-fold. Transferrin-mediated uptake of 67Ga was blocked by an anti-transferrin receptor monoclonal anti...
متن کاملDifferential growth-inhibitory effects of gallium on B-lymphocyte lines in high versus low iron concentrations.
The growth inhibitory effects of gallium on a murine and human B-cell line were studied using two different serum-free culture systems: (a) ferric citrate medium containing 500 microM iron and (b) transferrin medium containing 5 micrograms/ml of iron-saturated transferrin (0.125 microM iron). For the human cell line in ferric citrate medium, 50% growth inhibition achieved in the presence of tra...
متن کاملTransferrin receptor-dependent and -independent iron transport in gallium-resistant human lymphoid leukemic cells.
Recent studies showed that gallium and iron uptake are decreased in gallium-resistant (R) CCRF-CEM cells; however, the mechanisms involved were not fully elucidated. In the present study, we compared the cellular uptake of 59Fe-transferrin (Tf) and 59Fe-pyridoxal isonicotinoyl hydrazone (PIH) to determine whether the decrease in iron uptake by R cells is caused by changes in Tf receptor (TfR)-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 40 1 شماره
صفحات -
تاریخ انتشار 1999